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LONGITUDINAL SPRING CONSTANTS 

FOR LIQUID-PROPELLANT TANKS 

WITH ELLIPSOIJlAL ENDS 

By Larry D. Pinson 
Langley Research Center 

An analysis using l inear ized membrane theory has been made t o  obtain spring 
constants f o r  e l l ipso ida l  bulkheads t o  be used i n  longitudinal vibration analy- 
ses of liquid-propellant launch vehicles. 
f o r  t he  volume increment and first moment of the volume increment f o r  two types 
of loading, namely, constant pressure and hydrostatic pressure. P lo ts  a r e  pre- 
sented from which the  volume increment, first moment of t he  volume increment, 
and spring constants f o r  e l l ipso ida l  bulkheads can be obtained. 
equations and p lo ts  i s  i l l u s t r a t e d  by an example. 

A closed-form solution i s  presented 

U s e  of the 

INTRODUCTI ON 

S t ab i l i t y  problems involving interact ion between the  propulsion system and 
the  s t ructure  have recently been encountered i n  launch vehicles. 
have l e d  t o  increased in t e re s t  i n  the  accurate determination of longitudinal 
modes and frequencies of the vehicles. 
a c t e r i s t i c s  of s t ruc tu ra l  components i s  required before the  modes and frequen- 
c ies  can be calculated. 

These problems 

However, knowledge of the  e l a s t i c  char- 

Among the  s t ruc tu ra l  components whose e l a s t i c  properties must be deter- 
mined are  the  propellant tanks. These tanks, f o r  liquid-propellant launch 
vehicles, are typica l ly  cyl indrical  with e l l ipso ida l  ends. Wood, i n  reference 1, 
presents a spring-mass representation of such a tank and shows how the  spring 
constant can be determined by considering the  bulging of the cyl indrical  par t  
of t he  tank and neglecting the f l e x i b i l i t y  of the  bulkhead. Wood then shows how 
t h e  spring constant f o r  t he  f l ex ib l e  bulkhead, once obtained, may be incorpo- 
ra ted in to  t h i s  spring-mass model. The model of reference 1 is reproduced i n  
f igure  1. 
a consideration of t h e  s t ruc tu ra l  properties of she l l s  of revolution. 
t he  s h e l l  as a membrane, t h i s  consideration involves the  determination of the 
volume change and first moment of the volume change due t o  pressure loading. 
Sylvester, i n  reference 2, derives a general nonlinear expression f o r  the  volume 
change i n  a s h e l l  of revolution and applies the  l inear ized form of t h i s  expres- 
sion t o  an e l l ipso ida l  bulkhead subjected t o  constant i n t e rna l  pressure and 

The spring constant associated with the  bulkhead i s  determined from 
Treating 
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(a) Geometry and 
nomenclature. 

(b)  Pressure distribution. 

1 A 
1 

( c )  Equivalent spring- 
mss model. 

Figure 1.- Ellipsoidal bulkhead under hydrostatic pressure and its equivalent spring- 
mass model. 

hydrostatic i n t e rna l  pressure. Sylvester did not, however, derive expressions 
f o r  the  first moment of the  volume increment. 

The purpose of t he  present investigation i s  t o  determine the  spring con- 
s tan t  f o r  an e l l ipso ida l  bulkhead f o r  use i n  a spring-mass model such a s  tha t  
presented i n  reference 1. The spring constant f o r  an e l l i p so ida l  bulkhead i s  
determined by considering the  change i n  volume, o r  volume increment, and the  
first moment of the  volume increment by using an approach somewhat d i f fe ren t  
t o  t h a t  of reference 2. 
determining the  deformations of the  bulkhead, and the r e su l t s  a r e  presented as 
p lo ts  which may be used t o  determine the  spring constants f o r  e l l ipso ida l  bulk- 
heads w i t h  a rb i t r a ry  depth-to-radius ra t ios .  

Constant and hydrostatic pressures a re  considered i n  

SYMBOLS 

cross-sectional area of cyl indrical  portion of tank 

length of semimajor axis 

length of semiminor axis  

constant of integrat ion 

posi t ive constant denoting number of g un i t s  of ax ia l  acceleration 



E Young 's  modulus 

F(n,v) 

G( n, v )  

function defined by equation (26) 

function defined by equation (29) 

! Q  acceleration of gravity 

H(n,v) 

h 

k spring constant 

M first moment of l iqu id  volume 

function defined by equation (37) 

height of l iqu id  i n  cyl indrical  portion of tank 

t o t a l  mass of propellant 

s t r e s s  resul tant  i n  circumferential d i rec t ion  

stress resul tant  i n  meridional direct ion 

ntp 

Ne 

N16 
n depth-to-radius r a t i o  f o r  e l l ipso id  of revolution, b/a 

P a rb i t r a ry  pressure 

Q r a t i o  of l iqu id  height h t o  tank radius a 

ro = r2 s i n  16 

rl radius of curvature i n  meridional direct ion 

radius of curvature i n  circumferential direct ion r2 

S surf'ace 

t bulkhead thickness 

v t o t a l  l i qu id  volume 

AV volume increment, charge i n  volume of bulkhead due t o  i t s  deforma- 

V displacement i n  meridional direct ion 

W t o t a l  weight of l iqu id  

W displacement normal t o  shel l ,  posi t ive outward 

3 



Z distance measured from base of she l l  

un i t  s t r a i n  i n  circumferential direct ion € 8  

uni t  s t r a i n  i n  meridional direct ion 

distance from f r ee  surface of l iqu id  volume t o  centroid of volume 
before deformation 

f 

change i n  location of centroid of l iqu id  volume due t o  deformation 
of bulkhead 

A! 

8 coordinate of longitude 

V Poisson's r a t i o  

5 dummy variable 

P mass density 

ld colati tude 

u) natural  c i rcu lar  frequency 

Subscripts : 

C constant pressure 

H hydrostatic pressure 

Z reference t o  coordinate z 

reference t o  distance from free surface of l iqu id  volume before 
deformation 

I: 

ANALYSIS 

The spring constant f o r  an e l l ipso ida l  bulkhead which is  par t  of a l iquid- 
propellant tank i s  determined by using l inear ized membrane theory f o r  shells. 
The bulkhead i s  assumed t o  be attached t o  a cyl indrical  she l l  as shown i n  f ig-  
ure 1. h, 
t he  radius of t he  cylinder and the  length of t h e  semimajor axis  of t h e  e l l i p -  
soid i s  a, and the  length of t h e  semiminor axis of t he  e l l ipso id  i s  b. Only 
t h e  displacements of t h e  e l l ipso id  are considered herein - t h e  contribution of 
t h e  cylinder t o  t h e  longitudinal spring constant i s  t rea ted  elsewhere (ref. 1, 
f o r  example). 
however, a br ief  discussion of t he  model i s  given below. 

The depth of t he  l iqu id  i n  the  cyl indrical  portion of t h e  tank i s  

The assumptions used herein are the same as those of reference 1; 



1 Spring-Mass Model 

The spring-mass model used t o  represent t he  propellant-tank combination is  
shown i n  f igure l ( c ) .  mp 
i n  location of the  centroid of t he  l iqu id  due t o  the  tank deformation. 
l iqu id  i s  assumed t o  be incompressible and t o  a c t  essent ia l ly  as a r ig id  body 
insofar  as  it becomes allowable t o  assume t h a t  a l l  i t s  mass i s  concentrated at  
i t s  centroid. The cyl indrical  s h e l l  i s  assumed t o  be very th in  so tha t  bending 
s t resses  a re  negligible i n  calculating deflections.  The spring constant k 
represents t he  s t i f fnes s  of t he  bulkhead. 
it i s  incorporated in to  the  model as a spring i n  se r i e s  with another spring 
calculated on the  bas i s  of an i n f i n i t e l y  r ig id  tank bottom. 
combination i s  the  spring k l .  
approximately t o  the  propellant-tank interact ion.  

The def lect ion of t he  mass i s  taken t o  be the  change 
The 

When t h i s  spring constant i s  found, 

The resu l t  of t h i s  
On a qualita&iy_S: basis, t he  model corresponds 

It is  the  purpose of t h i s  paper t o  es tabl ish values of k when the  bulk- 
head i s  an e l l ipso id  of revolution. 

Spring Constant 

For the  purpose of finding the  spring constant f o r  the  bulkhead, the  
If the cyl indrical  portion of the  tank i s  assumed t o  be i n f i n i t e l y  r ig id .  

l i qu id  i s  then assumed incompressible, any movement of the  centroid w i l l  be the  
r e su l t  of deformation of the bulkhead. 

The loading on the  bulkhead consists of a hydrostatic component of pres- 

The loading due t o  tank pr&- 
sure and a constant component equal t o  the  pressure due t o  the  weight of the  
l iqu id  above the  bulkhead-cylinder connection. 
sur izat ion (ullage pressure) is  assumed t o  be constant with time and therefore 
may be neglected i n  the  dynamic analysis.  

The spring constant k used herein i s  defined as the  r a t i o  of the  t o t a l  
force act ing on the bulkhead due t o  the  weight of the  l iqu id  t o  the displace- 
ment of t he  centroid of t he  l iqu id  volume. 
where V is  the  volume of t he  mass of l iquid,  c i s  a posi t ive constant 
denoting the  number of g un i t s  of acceleration, and p is  the  mass density. 

This t o t a l  force i s  equal t o  pcgV 

With t h i s  def in i t ion  of k, t he  problem is  t o  f ind  the  resul tant  force 
acting on the  bulkhead and the displacement of the  centroid of t h e  mass of t h e  
l i qu id  due t o  the  deformation of t he  bulkhead. 

The resul tant  force  i s  determined as the  weight of t he  mass of l iqu id  i n  
the  tank under an acceleration r e l a t ive  t o  the  tank. That is  

w = pcgv (1) 

where W i s  t h e  weight of t he  mass of l iquid.  

The change i n  centroidal distance i s  determined by considering the  volume 
change of t he  bulkhead and the  first moment of t h i s  volume change. 
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The equation which locates  the  centroid of the  l iqu id  i s  

where 4 
centroid before.tank deformation and i s  the  first moment of the volume 
occupied by the  mass of l iqu id  with the  reference axis located a t  the  f r e e  sur- 
face of the  mass of l iqu id .  

i s  the distance from the  f r e e  surface of the  mass of l iqu id  t o  i t s  

(See f i g .  1.) 

After t he  bulkhead deforms, t he  volume of t he  bulkhead w i l l  change by some 
amount AV. 
which gives a volume change AV i n  the  cyl indrical  portion of the tank. Let 
,AMz 
located at  the  junction of the  bulkhead and cylinder. Then the change i n  the 
first moment of t he  volume about an axis  located a t  the f r e e  surface of the  mass 
of l iqu id  before tank deformation i s  

The f r e e  surface of the  l iqu id  i n  the  tank w i l l  drop by an amount 

be the  first moment of the  volume change i n  the  bulkhead about an axis  

where q 
l i qu id  about an axis located at  the f r ee  surface of the  mass of l iqu id  before 
tank deformation, and a i s  t h e  radius of the  cylinder. Since the  volume of 
t he  l iqu id  does not change, t he  change i n  centroidal distance i s  

i s  the  change i n  f i r s t  moment of t h e  volume occupied by the mass of 

(4) 

where @ is  the  change i n  the  centroidal distance of the  mass of l iqu id  due 
t o  deformation of t he  bulkhead. 

By the  previous def in i t ion  the  spring constant f o r  t he  bulkhead i s  

(AV)’ AM, + M V  - - 
r\ 

where k i s  the  spring constant. 
pared with the  other terms of the  denominator of equation ( 5 )  and may be 
neglected so t h a t  

The quantity (AV)*/25ta2 i s  small when com- 

6 



The neglect of t h i s  quantity is  consistent w i t h  other l inear iz ing assumptions 
made herein. 

The quantity V i s  found from t h e  geometry of t h e  tank but t he  quant i t ies  
AM, and AV must be found by integrat ing the  normal displacements due t o  the  
load over t h e  surface of the  bulkhead. 

Volume Increment 

The equation f o r  t he  volume increment AV f o r  a membrane s h e l l  of revolu- 
t i o n  with a r b i t r a r i l y  shaped meridian is derived i n  t h i s  section. 
s h e l l  of revolution and the  coordinate system i s  i l l u s t r a t e d  i n  f igure 2. 

A typ ica l  

It is  assumed i n  the  following derivation t h a t  bending stresses are 
negligible and t h a t  changes i n  the  radii of curvature are negligible. A con- 
sequence of t he  assumption t h a t  bending s t resses  a re  negligible i s  tha t  there  
i s  no control over t h e  noma1 displacement a t  the  boundary of t he  she l l .  
condition makes it impossible t o  match the  displacements of t he  bulkhead and 
the  cylinder a t  the  boundary. 
e f fec t  and w i l l  not substant ia l ly  a f f ec t  t he  overal l  d i s t r ibu t ion  of t be  
displacements. 

This 

It is  considered however t h a t  t h i s  is  a localized 

I Figure 2.- Typical shell of revolution. 
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From f igure 2 the  volume increment due t o  a loading which produces a nor- 
m a l  displacement w i s  

where 

ro = r2 s i n  # ( 8 )  

the  pr incipal  radiu of curvature i n  the  meridional direct ion #; r2  
i s  the  pr incipal  radius of curvature i n  the  circumferential direct ion 8; and 
$1 and #2 a re  the  lower and upper l i m i t s  of t h e  shel l ,  respectively. Refer- 
ence 3 gives the displacements f o r  axisymmetric loading as: 

w = r2c8 - v cot $ (9 )  

v = s i n  #r -d# f(#) 
+ c] s i n  # 

where C i s  a constant of integrat ion which i s  determined from the  requirement 
t h a t  the  meridional displacement v have some known value a t  a par t icu lar  
value of # and 

f (#)  = rlc# - r2c6 

I n  these equations E$ and denote un i t  s t r a ins  i n  the  meridional and c i r -  

cumferential directions,  respectively. Substi tution of t he  equations f o r  ro, 
w, and v 
increment 

i n t o  equation (7) yields  the  following expression f o r  the  volume 

AV = 231 J1 $2 rlr2 2 c8 s i n  fi d$ - 2fi 4: rlr2 [l 3 d$ + j s i n  # COS fi d# 

If it is  required t h a t  the  meridional displacement v be zero a t  the  lower 
l i m i t  of t he  shel l ,  t he  constant C may be eliminated by putting l i m i t s  of 
integrat ion on the  bracketed in tegra l .  
t i o n  in to  the  integrand of t h e  bracketed in t eg ra l  and place the limits 
$ on the  integral .  

Introduce a dummy variable of integra- 
$1 and 

The result i s  

8 



where 5 i s  a dunnny variable of integration. 

F i r s t  Moment of the  Volume Increment 

I n  the  development of t h e  equation f o r  t he  f i r s t  moment of the  volume 
increment, the  same basic  assumptions which were made f o r  the development of 
t h e  equation f o r  the  volume increment a r e  made. 

From f igure 2, t he  f i rs t  moment of t he  volume increment about the  base of 
t he  s h e l l  due t o  a loading which produces a def lect ion w i s  

where z i s  measured from the  base of t he  she l l .  Following the  same procedure 
as used i n  the  previous section f o r  determining volume increment, t he  expres- 
sion f o r  the  first moment of the  volume increment about the base of the s h e l l  
f o r  axisymmetric loading i s  found t o  be 

where the  requirement has again been made t h a t  the meridional displacement v 
i s  zero a t  the base of t he  she l l .  

Application t o  the  El l ipsoidal  Bulkhead 

I n  order t o  apply the  general expressions f o r  t he  volume increment and the 
first moment of t he  volume increment (eqs. (13) and (l?)), several  quant i t ies  
which are in te r re la ted  through the  loading and s h e l l  geometry must be estab- 
l ished. 
loading a r e  the  uni t  s t r a ins  €6 and e o .  These s t r a ins  a re  re la ted  t o  the  
stress resu l tan ts  through Hooke's l a w  and t h e  s t r e s s  resul tants  are related t o  
t h e  loading through the  equilibrium of forces on the  s h e l l  and the  geometry of 
t h e  she l l .  Specifically, Hooke's law states t h a t  

The quant i t ies  i n  equations (13) and (15) which are related t o  the  

9 
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and 

vNa> 
= -(Ne 1 - 

Et 

where E i s  Young's modulus; t i s  the  thickness of the  shel l ;  v i s  Poisson's 
ra t io ;  and Ngj and Ne are the  s t r e s s  resul tants  i n  the meridional and c i r -  
cumferential directions,  respectively. To f ind  the  s t r e s s  resul tants  the r a d i i  
of curvature of the  s h e l l  must be known. Also needed t o  apply the  expression 
f o r  the f irst  moment of t he  volume increment i s  the  quantity z which is  the 
distance from the  base of the  s h e l l  t o  any point on the  bulkhead. For the  
e l l ipso id  of revolution these quant i t ies  are: (See r e f .  3 . )  

- n2a - 

(sin2$ + n2cos2gj) 
312 

- 

-n 2 a cos 6 

where n i s  the  depth-to-radius r a t i o  of the e l l i p so ida l  bulkhead. The 

pertinent range of $ is  E <= f4 5 TI. 
2 

Stresses i n  an e l l i p so ida l  bulkhead.- The s t r e s s  resul tants  f o r  the  
e l l i p so ida l  bulkhead a re  found from the  equilibrium equations and the  external 
forces. The loadings, 
o r  pressures, being considered herein a r e  divided i n t o  two components as i l l u s -  
t r a t ed  i n  f igure 1 - a constant normal pressure equal t o  pcgh and a hydro- 
s t a t i c  pressure equal t o  pcgz. For these loadings, t h e  membrane theory f o r  
she l l s  of revolution ( r e f .  3,  f o r  instance) gives t h e  following s t r e s s  
resul tants  f o r  t he  two components of the  load on the  e l l ipso ida l  bulkhead: 

These forces a re  re la ted  t o  the  pressure d is t r ibu t ion .  

For constant pressures - 

and 

10 
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For hydrostatic pressure - 
c 

pcga2n n3cos3$ + (sin2$ + n2cos2$) 

N$ = 3 1 sin2$ (sin2$ + n2cos28) 

and 

-pcga 2 2  n cos $ 

(sin'$ + n2cos2$) 3n 
Ne = 

' Having obtained the  s t r e s s  resultants,  the  s t r a i n s  may be found by sub- 
s t i t u t i n g  the  s t r e s s  resu l tan ts  f o r  the  par t icu lar  component of loading being 
considered in to  equations (16) and (17). 

Volume increment f o r  an e l l ipso ida l  bulkhead.- The volume increment f o r  an 
e l l ipso ida l  bulkhead is  obtained by subst i tut ing the s t r a ins  f o r  the  appropriate 
loading condition in to  equation (l3),  t he  general expression f o r  the  volume 
increment. If the  thickness of the bulkhead i s  variable the  s t r a ins  must con- 
t a i n  t as a function of $. In  the  present analysis the  bulkhead thickness 
i s  assumed t o  be constant. It i s  a l so  assumed t h a t  the  bulkhead i s  one-half 
of an e l l ipso id  of revolution, thus giving the  range of integrat ion $ 5 $ 5 JI. 
The integrations a re  straightforward, and give the  following r e su l t s  f o r  t h e  
volume increment. 

For constant i n t e rna l  pressure, a f t e r  making the  subst i tut ion 5 = cos $, 
it i s  found t h a t  

4 
E( . ,VU 

npcgha 
2Et 

AVc = 

where 

The function F(n,v) i s  plot ted against n i n  figure 3 f o r  various 
values of Poisson's r a t io .  
The volume increment f o r  a hemispherical dome can be found by taking the  l i m i t  
of AVc given i n  equation (a) as n approaches unity.  The result f o r  a 
hemisphere i s  found t o  be 

Equation (a) agrees with the  result of reference 2. 

11 
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The simplicity of t he  geometry of the  hemisphere makes the  calculation of 
t he  volume increment f o r  t h i s  case qui te  simple and the  calculation provides an 
independent check, though not an absolute proof, of t h e  va l id i ty  of t he  expres- 
sion for the  volume increment f o r  the  e l l i p so ida l  bulkhead. 
r a t e  calculation w a s  made f o r  t he  hemisphere and the  r e su l t  agreed with 
equation (27). 

An ent i re ly  sepa- 

.5 V .6 .7 .8 
n 

I .o 

Figure 3.- Variation of F(n,v) with depth-to-radius r a t i o  f o r  various values of 
Poisson's ra t io .  

12 



For hydrostatic pressure, after making the  subst i tut ion 6 = sin2@, it i s  
found t h a t  

c 

where 
4 2 22n -13 -I- 37n + 1 0 ~ 3  + - 

45n 9 
G(n,v) = ~ 

+ (2 - n2 + 2vn 
6n L-7 

Equation (29) i s  plot ted i n  f igure 4 against n f o r  several  values of 
Poisson's ra t io .  The volume increment f o r  t h e  hemisphere subjected t o  hydro- 
s t a t i c  pressure i s  found by le t t ing n approach uni ty  i n  equation (28).  The 
resu l t  i s 

sI p cga5 
AVH = ~ ( 1  - V )  

Separate calculation of t h e  volume increment f o r  t h e  hemisphere subjected t o  
hydrostatic pressure yields  a r e su l t  which i s  i n  agreement with equation (30). 

Equation (29) d i f f e r s  from t h e  resu l t  presented i n  reference 2 i n  that  

t h e  quantity 2vn2 i n  the  last term of the  equation i s  vn2 i n  reference 2. 
Communication with the  author of reference 2 confirmed the  va l id i ty  of t he  
expression as given i n  equation (29). 

First-moment of volume increment for* e l l ipso ida l  bulkhead.- Before 
proceedin@; with the  devglopment o f t h e r e l a t i o n s  f o r  t h e  f i r s t  moment of t he  
volume increment t he  following theorem i s  considered which i s  presented i n  ref-  
erence 4 on t h e  first moment of t he  volume increment i n  any shell :  L e t  p be 
an a rb i t ra ry  pressure d is t r ibu t ion  and be the  normal displacements due t o  
a hydrostatic pressure resulting from a l iqu id  whose uni t  weight i s  pcg. The 
first moment of t he  volume increment due t o  the  a rb i t r a ry  pressure dis t r ibut ion 
i s  t h e  surface in tegra l  

WH 

This theorem can be used t o  determine t h e  f irst  moment due t o  constant 
pressure. If p is  selected t o  be the constant pressure pcgh, equation (31) 
becomes 

&Ic = h WE dS (32) 

13 



111 111111Il1111111 II I1 I I I I1 I I1 I I 

Note that ,  by definit ion,  t h e  volume increment due t o  
be writ ten as 

G (n ,Y) 

.J 

Figure 4.- Variation of G(n,v) 

n 
.8 

hydrostatic pressure can 

.9 

U 

0 

I /4 

1/3 

I .o 

with depth-to-radius ra t io  f o r  various values of 
Poisson's ra t io .  
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Therefore, the first moment of the  volume increment due t o  constant pressure i s  

Substi tution of equation (28) i n t o  equation (34) gives t h e  first moment of t he  
volume increment created by the  constant component of pressure 

where G(n,v) i s  given by equation (29). 

Unfortunately no such simple relationship ex i s t s  f o r  the f i r s t  moment of 
t h e  volume increment caused by the  hydrostatic component of the  pressure and 
one must resor t  t o  the  method used i n  obtaining the  volume increment. 

To f ind  the  f i r s t  moment of the  volume increment which i s  caused by the 
hydrostatic component of the  pressure, the  equations f o r  t he  s t r e s s  resul tants ,  
equations (23) and (24) a re  substi tuted in to  equations (16) and (17) t o  obtain 
the  s t ra ins ,  and the  resul t ing expressions a r e  subst i tuted in to  equation (15). 
This expression i s  then integrated over t he  range 
t h a t  

$ $ (d 5 II and it i s  found 

where 

H(n,v) = -E7 n2 - 16n - v(24n - 3j 
27 

+ [2 - 6n 2 + 3n4 - vn2(2 - n2] 

The function H(n,v) i s  plot ted i n  f igure 5 against  n f o r  various 
values of Poisson's r a t io .  

When equation (36) i s  specialized t o  t h e  hemisphere by l e t t i n g  n approach 
unity, t he  following expression r e su l t s  f o r  t he  first moment of the  volume 
increment i n  a hemisphere subjected t o  hydrostatic pressure: 

I 
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n 

Figure 5.- Variation of H(n,v) with depth-to-radius ratio for various values of 
Poisson's ra t io .  
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Separate calculations f o r  the  hemisphere, as i n  the  checks on the  volume 
increment, y ie ld  an expression which i s  i n  agreement with equation ( 3 8 ) .  

Spring Constants f o r  El l ipsoidal  Bulkheads 

Devglopngnt -of equations.- With expressions f o r  t he  volume increment and 
first moment of the  volume increment, t he  equation f o r  t he  spring constant can 
be developed according t o  

The volume of l iqu id  

where q i s  the  r a t i o  of 

equation (6). 

within the  tank i s  

the  height of l iqu id  within the  tank h t o  the  radius 
of the tank a, and n i s  the  depth-to-radius r a t i o  of the  e l l ipso ida l  
bulkhead. 

Adding the  volume changes f o r  t he  two components o f  loading and the  first 
moments of t he  volume changes and subst i tut ing these sums, along with equa- 
t i o n  (39) f o r  t he  volume in to  equation (6) yields  t h e  following expression f o r  
the  spring constant f o r  t he  e l l i p so ida l  bulkhead 

where the  m c t i o n s  F(n,v), G(n,v), and H(n,v) a r e  defined by equations (26), 
(B), and (37), respectively. 

Equation (40) gives the  spring constant f o r  an e l l i p so ida l  bulkhead sub- 
jected t o  constant and hydrostatic i n t e rna l  pressure. 
the  spring constant i s  a function of the  geometry of the  e l l ipso id  - the  
r a t i o  n; the  height of t he  l iqu id  i n  the  tank - the  r a t i o  
the bulkhead thickness; and Poisson's r a t io .  
depend on t he  radius of the  tank d i r ec t ly  - the  radius a f f ec t s  t he  spring con- 
s tan t  only through the  r a t io s  n and q. 

This equation shows t h a t  

q; Young's modulus; 
The spring constant does not 

I n  cer ta in  launch vehicles t h e  oxidizer and f u e l  a r e  separated by a bulk- 
head which i s  comon t o  both tanks, and geometry s imilar  t o  t h a t  shown i n  f ig-  
ure 6 resu l t s .  
s t resses  i n  the  bulkhead is  of fse t  by pressurizing the  a f t  tank. 
f igurat ion the  volume change and first moment of t he  volume change may be cal- 
culated by using the  functions already developed by finding the  volume change 
o r  first moment of t h e  volume change due t o  a constant pressure pcgh and 

The poss ib i l i t y  of buckling due t o  the  resul t ing compressive 
For t h i s  con- 



subtracting the  volume 
change o r  first moment of 
t he  volume change due t o  
a hydro s t  at  i c pres sure 
(shown by the  dotted l i n e  
on the  pressure dis t r ibu-  
t i o n  of f i g .  6) .  

The equation f o r  t he  
volume of t he  l iqu id  i n  
the  tank i s  

na3  V = -(3q - 2n) (41) 
3 

where t h e  quant i t ies  V, 
a, q, and n have t h e  
same meaning as before. 

Repeating the  pro- 
cedure used i n  the  devel- 
opment of equation (40) 
and noting t h a t  t he  terms 
associated with the  hydro- 
s t a t i c  component of pres- 
sure are  subtracted, 
ra ther  than summed, the  
following equation f o r  the  
spring constant results: 

-i i 

a -  . 
(a) Geometry for 

an inverted 
bulkhead. 

(b) Pressure 
distribu- 
tion. 

Figure 6.- Common ellipsoidal bulkhead under hydrostatic 
pressure. 

- (42) 
2n(3q - 2n)2 

9 b ( n , v )  - ~ ( n , v )  + q2F(n,v)I 
k = E t  

The range of q i n  t h i s  case must be r e s t r i c t ed  t o  the  range q z  n because 
it i s  assumed t h a t  t h e  l iqu id  completely covers t h e  bulkhead. 

If the  height of l iqu id  i s  very large compared with the  depth of the  
e l l ipso ida l  bulkhead, t he  contribution of t h e  hydrostatic component of pres- 
sure t o  the  spring constant w i l l  become s m a l l  compared with t h e  constant com- 
ponent of pressure and the  expression f o r  the spring constant w i l l  approach a n  
aysmptotic value. 
expression f o r  t he  spring constant as q increases without bound. Taking t h i s  
l i m i t  y ie lds  

This asymptotic value i s  found by taking the  l i m i t  of the  

Properties of equations.- If equation (40) i s  divided on both s ides  by the  
quantity Et, different ia ted with respect t o  q, and the  derivative set equal 

18 



t o  zero, an equation r e su l t s  which gives the  value of 
k/Et i s  a m a x i m u m .  This equation i s  

q f o r  which the quTntity 

If t h i s  value of q i s  plot ted against n f o r  a value of Poisson's r a t i o  of 
l/3, two branches result as shown i n  f igure 7. These branches become asymptotic 
t o  the  value A s i m i l a r  procedure applied t o  equation (42) yields  
the  same expression except t he  s ign of t he  r ight  s ide  of t he  equation i s  changed 
from negative t o  posit ive.  The branch having negative values i s  of no in t e re s t  
i'n t h e  discussion of equation (40) because the  

n = 0.827. 

l i qu id  surface i s  below the  ell ipsoid-cylinder 

20 

IO 

q o  

-10 

-20 

I 

1 I I I 

n 
.7 .0 .9 I .o 

Figure 7.- Variation of c r i t i c a l  value of height- 
to-radius r a t i o  with depth-to-radius r a t i o  for 
a Poisson's r a t i o  of 113. 

analysis does not hold when the  
connection i n  which case a sepa- 
r a t e  problem must be solved. How- 
ever, f o r  values of n grea te r  
than 0.827, posi t ive values of q 
ex i s t  where the  quantity k/Et 
i s  maximum. 
e f fec t .  The curve f o r  n = 1, 
t h a t  is, the  hemisphere has a 
maximum a t  q = 1.48. For values 
of n l e s s  than  0.827, no re la-  
t i v e  maximum exis t s .  Thus, f o r  
values of n less than 0.827, 
and f o r  a Poisson's r a t i o  of l/3, 
t he  spring constant w i l l  not 
exceed the  asymptotic value given 
by equation (43) .  I n  discussing 
equation (42) , opposite conclu- 
sions may be drawn. 
sign of the  r igh t  s ide of equa- 
t i o n  ( 4 4 )  i s  changed the  negative 
branch of the  plot  of f igure 7 
becomes the  posi t ive branch and 
the  posi t ive branch becomes nega- 
t i v e .  Thus, f o r  values of n 
grea te r  than 0.827, no f i n i t e  
value of q ex i s t s  f o r  which the 
quantity k/Et i s  a maximum and 
it w i l l  never exceed the asymp- 
t o t i c  value given by equa- 
t i o n  ( 4 3 ) .  For values of n 
l e s s  than 0.827, posi t ive values 
of q whi-ch are greater  than n 
ex i s t  such t h a t  the  quantity 
k/Et i s  maximum. This e f fec t  
i s  shown i n  f igure 9 .  

Figure 8 shows t h i s  

Since the  

The derivation did not 
include the deformations of the 
cy l indr ica l  portion of the tank. 
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However, t h i s  e f fec t  can be included i n  the  t o t a l  representation f o r  t he  tank 
as described i n  reference 1 and i l l u s t r a t e d  i n  the  following section. 

Figure 8.- Variation of spring constant for  e l l ipsoidal  bulkhead with height-to-radius 
n r a t i o  f o r  several values of and Poisson's r a t i o  of 113. 

I l l u s t r a t i v e  Example 

I n  order t o  c l a r i f y  t h e  procedure used i n  obtaining t h e  spring constant 
and the  process of combining the  bulkhead spring constant with tha t  of t h e  
cyl indrical  portion of t he  tank, an example i s  presented using typ ica l  
parameters. 

Suppose it i s  desired t o  f ind  the  equivalent spring-mass system f o r  a 
tank having the  following parameters: 

20 
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Youngls modulus, E, p s i  . . . . . . . . . . . . . . . . . . . . . . . . .  lo7 
Bulkhead thickness, t, in .  . . . . . . . . . . . . . . . . . . . . . . .  0.05 

. . . . . . . . . . . . . . . . . . . . . . . .  Depth-to-radius ra t io ,  n 1p 
Tank radius, a, in .  . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
Poisson's ra t io ,  v 113 
Liquid height, h, i n .  45 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  

k 
Et  
- 

0 

Figure 9.- Variation of spring constant fo r  inverted ellipsoidal bulkhead with height-to-radius 
n ratio fo r  several values of and Poisson's ratio of 113. 
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The quantity q i s  % = 0.75. From figures 3, 4, and 5, it  i s  found t h a t  
60 

F(n,v) = 1.150, G(n,v)  = 0.695, and H(n,v) = 0.615. Substi tution of these 
values in to  equation (40) yields a spring constant f o r  t he  bulkhead of 
2.034 x lo6 lb/ in .  

The spring constant just determined i s  only par t  of the complete s t i f fnes s  
representation f o r  t h e  tank-liquid combination. 
from reference 1, i s  i l l u s t r a t e d  i n  f igure 1. The equations used t o  obtain the  
various spring constants are taken d i r ec t ly  from reference-1; however, equs- 

, not K 1  = -... t i o n  A . 2 1  on page 81 of t h e  reference should read K1 = - 
1 - v  1 - V '  

The complete representation, 

- vK2 - K2 

AE 
k 3 = - T -  V k l  (47) 

Substituting t h e  given values in to  equations (45), (46), and (47) and assuming 
the  cyl indrical  tank w a l l  t o  have the  same thickness as tha t  of t he  bulkhead, 
the  following results are obtained: 
k2 = 0.506 x lo6 lb/in., and k3 = 3.852 X lo6 lb/ in .  

k l  = 1.011 x lo6 lb/in. ,  

The effect  of incorporating the spring constant f o r  t he  bulkhead in to  the  
spring-mass model of f igure 1 may be evaluated by comparing the values obtained 
from equations (45), (46), and (47) with those obtained by assuming t h a t  the  
bulkhead i s  i n f i n i t e l y  st iff .  If the  bulkhead i s  r ig id  equations (46) and (47)  
a re  val id  but equation (45) becomes 

By using equation (48) along with equations (46) and (47), t he  following resu l t s  
a r e  obtained f o r  t he  system with a r ig id  bulkhead: 
k2 = 1.0% x 10 6 lb/in., and k3 = 3.519 x lo6 lb/ in .  The effect  of including 
bulkhead f l ex ib i l i t y ,  therefore, i s  a reduction of 50 percent i n  both k l  and 
k2  and an increase of 9 percent i n  k3. 

kl = 2.011 x 106 lb/in. ,  

The e f fec t  of bulkhead f l e x i b i l i t y  on t h e  frequency may be determined by 
assuming the  ends t o  be fixed. The uncoupled l i qu id  frequency i s  

22 



where 9 is  the  ac tua l  l iqu id  m a s s .  Since t h e  frequency var ies  with the 
1/2 power of t he  sum 
s tan t  i s  a 42-percent reduction i n  t he  frequency f o r  t h i s  example. 

k l  + k2, t h e  e f fec t  of including t h e  bulkhead spring con- 

CONCLUDING REMARKS 

An analysis w a s  made t o  obtain spring constants f o r  e l l ipso ida l  bulkheads 
t o  be used i n  longitudinal vibration analyses of liquid-propellant launch vehi- 
cles. Closed-form 
expressions f o r  t he  spring constant f o r  e l l ipso ida l  bulkheads subjected t o  con- 
s t a n t  and hydrostatic pressure have been presented. The volume increment and 
f irst  moment of t he  volume increment f o r  these pressures were derived. Plots  
a r e  presented t o  a id  i n  the  evaluation of the  spring constants f o r  bulkheads of 
a rb i t ra ry  depth-to-radius ra t ios .  The re la t ion  of t he  spring constant of t he  
bulkhead t o  the  en t i re  tank model has been discussed. The procedure has been 
i l l u s t r a t e d  by means of an example. The example showed t h a t  including the  bulk- 
head f l e x i b i l i t y  caused a s ignif icant  change i n  t h e  frequency of t he  par t icu lar  
system considered. 

The analysis w a s  based on l i nea r  membrane theory of shel ls .  

The work presented herein could be extended by computing the  spring con- 
s t a n t  f o r  other cases, among which are the  following: 
t h e  l eve l  of the  l iqu id  i s  below t h e  ellipsoid-cylinder connection, or  (2 )  by 
computing the  spring constant f o r  another configuration, say a conical shel l .  
The work could fur ther  be extended by direct ing e f fo r t s  toward the  improvement 
of t he  propellant-tank model. 

(1) the  case i n  which 
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